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Abstract 

A 1.82mm2 65nm neuromorphic object recognition processor is designed 

using a sparse feature extraction inference module (IM) and a task-driven 

dictionary classifier. To achieve a high throughput, the 256-neuron IM is 

organized in four parallel neural networks to process four image patches 

and generate sparse neuron spikes. The on-chip classifier is activated by 

sparse neuron spikes to infer the object class, reducing its power by 88% 

and simplifying its implementation by removing all multiplications. A 

light-weight co-processor performs efficient on-chip learning by taking 

advantage of sparse neuron activity to save 84% of its workload and 

power. The test chip processes 10.16G pixel/s, dissipating 268mW. In-

tegrated IM and classifier provides extra error tolerance for voltage 

scaling, lowering power to 3.65mW at a throughput of 640M pixel/s. 

Introduction 
Recognizing objects in an image can be accomplished by first extracting 

features from the image using an inference module (IM), and then clas-

sifying the object based on the extracted features using a classifier (Fig. 1). 

The locally competitive algorithm (LCA) [1] is a neural-inspired IM that 

infers a sparse set of features to best represent the input image. Compared 

to a conventional feature extraction algorithm, e.g., SIFT [2], an 

LCA-based IM simplifies the classifier and potentially improves the 

classification accuracy. Past work has produced an 18-neuron spiking 

LCA based analog IM [3] (Fig. 2), but the small scale is not suitable for 

practical problems. A 256-neuron digital IM using SAILnet [4] is scalable 

and achieved a much higher throughput (Fig. 2), but the design was 

dominated by memory and it is not capable of object classification. In this 

work, we demonstrate a 256-neuron 10.16G pixel/s spiking LCA based 

IM that is integrated with a task-driven dictionary classifier to exploit the 

sparse feature extraction for an end-to-end object recognition processor. 

A light-weight learning co-processor is integrated on chip to learn and 

adapt the feature library. This self-contained design empowers low-power 

and high-performance embedded applications of computer vision. 

Sparse Feature Extraction and Sparse Event-Driven Classifier 

The 256-neuron IM is organized in four 64-neuron spiking neural net-

works, each operating on a 16×16 input image patch to extract features in 

parallel (Fig. 3). Through training, each neuron develops a 16×16 recep-

tive field (RF), i.e., feature that excites the neuron. The division of an 

input image into smaller patches reduces the size of the neural networks, 

resulting in a 4× reduction in memory size. By deploying the four neural 

networks in parallel, a high throughput and comparable inference accu-

racy can be achieved without the memory overhead associated with a 

large neural network. The neuron dynamics are tuned to achieve a high 

inference accuracy with less than 16% of neurons firing over a 2τ infer-

ence period (τ: neuron time constant), saving the power and enabling a 

sparse event-driven classifier and a light-weight on-chip learning. 

Each IM network encompasses 64 digital integrate-and-fire neurons. 

Every 8 neurons are connected in a grid for detecting neuron spikes and 

generating address events (AE) to signal neuron spikes. The 8 grids are 

connected in an 8-stage systolic ring to propagate AEs (Fig. 3). The 

network structure represents the optimal tradeoff between hardware 

efficiency and inference accuracy: a large grid is more compact, but 

results in more simultaneous neuron spikes colliding over the grid, 

worsening the inference accuracy; while a systolic ring preserves neuron 

spikes but a long ring costs more area and power. 

A real-time classifier implementing task-driven dictionary learning [5] is 

tightly integrated with the IM to recognize objects from 10 classes. Four 

sub-classifiers are each attached to an IM network by tapping the systolic 

ring (Fig. 3). Each sub-classifier consists of 10 class nodes listening to the 

neuron spikes generated by an IM network. A neuron spike represents an 

active feature that triggers a weighted vote for each class node. The 

weight depends on the degree of the feature’s association with the object 

class, and they are learned through supervised learning. Since neuron 

spikes are sparse, the classifier is designed to be event-driven to reduce its 

power by 88%. The binary spike train allows the classifier to be imple-

mented with adders, replacing costly multipliers to save 72% area and     

65% power. The class node outputs from the four sub-classifiers are used 

to score the most likely object class as output. 

Light-Weight On-Chip Learning Co-Processor 

Real-time learning is not necessary for practical applications, but on-chip 

learning reduces I/O power and it provides quick adaptation to changing 

environment. For this reason, a light-weight learning co-processor is 

integrated on chip to implement the rules governing the learning of the 64 

RFs that form the feature dictionary of the IM, and 16K feedback weights 

between neurons. The RFs are developed iteratively following stochastic 

gradient descent to minimize image encoding error and improve sparsity. 

Learning involves large vector and matrix multiplications that are natu-

rally mapped to a vector processor. However, the vectors are sparse due to 

sparse neuron spikes (Fig. 4). We take advantage of this insight to design 

a scalar processor to cut over 84% of the workload and power. The 

low-cost scalar learning co-processor provides three instructions to sup-

port learning: vector-matrix product, matrix scaling, and matrix-matrix 

product, which are all executed element-by-element in a serial fashion. 

Test Chip Measurement 
A test chip of the object recognition processor with on-chip learning is 

fabricated in TSMC 65nm CMOS (Fig. 7, Table I). The object recogni-

tion processor runs at a maximum frequency of 635MHz at 1.0V and 

room temperature to achieve a high throughput of 10.16G pixel/s, dissi-

pating 268mW (Fig. 5). The results demonstrate 8.2× higher throughput 

and 6.7× better energy efficiency than the previous SAILnet IM [4]. An 

example of recognizing an object is shown in Fig. 3. Tested with the 

MNIST database of 28×28 handwritten digits [6], the chip is capable of 

recognizing 9.9M objects/s at an accuracy of 84%. Increasing the infer-

ence period from 2τ to 12τ improves the classification accuracy to 90%, 

but cuts the throughput by 6×. The classification accuracy of this sin-

gle-layer IM and single-layer classifier is still lower than what is reported 

in state-of-the-art machine learning literature, but the scalable architec-

ture allows multiple layers of IM and classifier to be integrated in future 

work to improve the results. The on-chip learning co-processor runs at a 

maximum frequency of 650MHz at 1.0V, dissipating 258mW. A rigorous 

training using 1M image patches can be completed within three minutes. 

After learning converges, the co-processor is powered off. 

The neuromorphic IM is error tolerant, and integrating IM and classifier 

provides additional error tolerance as the soft classifier accommodates 

more errors in feature extraction. Error-free classification can be achieved 

at a 450mV datapath supply and 425mV memory supply to improve the 

energy efficiency to 5.7pJ/pixel at 40MHz (Fig. 6). Compared to 

state-of-the-art neuromorphic ASICs, this design demonstrates enhanced 

capabilities and energy efficiency (Table II). 
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Fig. 1. Sparse neuromorphic object recognition system composed of the spiking LCA inference module 
(IM) front-end and the task-driven classifier back-end. A sparse set of features are extracted to represent 
the input image. The weighted spiking rate is summed to vote the most likely object class. 

Fig. 4 . (a) Feature matrix and a 64-entry spike count 
vector multiplication to support learning. (b) Simplified 
vector-matrix product by taking advantage of sparsity.

Fig. 2. Throughput and energy comparison with state-of-the-
art neuromorphic ASICs for sparse coding. 

Fig. 5. Measured power consumption of the object 
recognition processor at the minimum datapath and 
memory supply voltages for each frequency.

Fig. 6. Measured energy efficiency of the 
object recognition processor by exploiting 
error tolerance.
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Fig. 7. Chip microphotograph
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Fig. 3. Object recognition processor with on-chip learning co-processor. (a) Four image patches to extract features in parallel. (b) Inference module (IM) 
implemented in four 64-neuron spiking neural networks. (c) Spike event-driven classifier (d) Soft output of ten class nodes (e) On-chip learning co-processor.
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TABLE II: COMPARISION WITH PRIOR WORKS

Energy metric

Spiking LCA

Core area

Reference

# Neurons

# Synapses

Algorithm

Architecture

Technology

Mem size

Kim [4]

256

128K

1.31Mbits

SAILnet

65nm

 3.1mm2

Shapero [3]

18

0.53K

3.7 Kbits

0.35um

-

Learning Off chip On chip

 48pJ/pixel6.3nJ/input

7 bit

This work

256

83K

301Kbits

Spiking LCA with 

classification

65nm

 1.8mm2

On chip

5.7pJ/pixel

Bitwith 
of a Synapse

8 and 
13 bits

4, 5 and
14 bits

2-layer grid

and ring

2-layer grid

and ring

RBM

Merolla [8]

256

256K

Crossbar

256Kbits

45nm

 4.2mm2

Off chip

 45pJ/spike

1 bit

Seo [7]

256

64K

256Kbits

STDP 

45nm

 4.2mm2

On chip

-

4 bits

Crossbar Crossbar

 1.73 × 1.73mm (2.99mm2)

6.7×

8.2×

TABLE I: CHIP SUMMARY

Energy Efficiency 

(pJ/pixel)

Throughput 

(Mpixel/s)

Core Area 

Chip Area                      

Frequency (MHz)    

Datapath (V)

Memory (V)

Power (mW)

63540

1.000.45

1.000.425

10160640

268.23.65

26.405.70

1.35mm × 1.35mm

(Datapath : 0.97mm2,

 Memory  : 0.48mm2,          

Learning : 0.21mm2, 

 Periphery: 0.16mm2)


